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Executive Summary 

Modern machine learning is powerful in many ways, but profoundly 
fragile in others. Because of this fragility, even the most advanced 
artificial intelligence tools can unpredictably fail, potentially 
crippling the systems in which they are embedded. As machine 
learning becomes part of critical, real-world systems, from cars and 
planes to financial markets, power plants, hospitals, and weapons 
platforms, the potential human, economic, and political costs of AI 
accidents will continue to grow. 

Policymakers can help reduce these risks. To support their efforts, 
this brief explains how AI accidents can occur and what they are 
likely to look like “in the wild.” Using hypothetical scenarios 
involving AI capabilities that already exist or soon will, we explain 
three basic types of AI failures—robustness failures, specification 
failures, and assurance failures—and highlight factors that make 
them more likely to occur, such as fast-paced operation, system 
complexity, and competitive pressure. Finally, we propose a set of 
initial policy actions to reduce the risks of AI accidents, make AI 
tools more trustworthy and socially beneficial, and support a safer, 
richer, and healthier AI future. Policymakers should: 

● Facilitate information sharing about AI accidents and near 
misses, working with the private sector to build a common 
base of knowledge on when and how AI fails. 

● Invest in AI safety research and development (R&D), a 
critical but currently underfunded area. 

● Invest in AI standards development and testing capacity, 
which will help develop the basic concepts and resources 
needed to ensure AI systems are safe and reliable. 

● Work across borders to reduce accident risks, including 
through R&D alliances and intergovernmental organizations. 
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1. What are AI accidents? 

We are on the threshold of a new industrial revolution. Artificial 
intelligence—the capability of machines to reason, communicate, 
and make decisions as only humans could before—will be at its 
center.1 Technical achievements over the past several years, 
especially in the machine learning subfield of AI, have produced 
vastly more powerful AI systems.2 Advances in complementary 
fields, such as robotics and networking, are unlocking new real-
world applications for these systems, from autonomous fighter 
jets,3 to fiction written by computers,4 to novel, AI-optimized 
medicines.5  

In the years to come, AI is expected to pervade our lives, much like 
electricity in the twentieth century and the internet in the twenty-
first.6 Today, we are at the very beginning of this process. Thomas 
Edison received the patent on his light bulb in 1880; it took until 
1925 to electrify half of U.S. homes.7  

Deploying AI is an ongoing process that holds tremendous 
promise—and equally tremendous danger. Today’s cutting-edge AI 
systems are powerful in many ways, but profoundly fragile in 
others. They often lack any semblance of common sense, can be 
easily fooled or corrupted, and fail in unexpected and unpredictable 
ways. It is often difficult or impossible to understand why they act 
the way they do.8  

Despite these problems, AI systems are becoming integrated into 
the real world at a pace that is only expected to accelerate in the 
next decade.9 These systems may be fragile, but as companies, 
governments, and militaries decide when and how to deploy them, 
their huge potential benefits will often overshadow uncertain risks. 
Leaders in these organizations also may not be fully aware of these 
risks, and may face pressure from competitors willing to move 
quickly.10 To be sure, some industries are already deploying AI 
much faster than others, and a few sensitive sectors may remain 
“walled off” for some time.11 But eventually, the powerful 
incentives driving the spread of AI today are likely to make it 
pervasive. As our economy, security, and health become more and 
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more dependent on AI systems, these systems’ fragilities will put 
lives at stake.  

Today, many are worried about AI being misused intentionally. An 
adversary could attack with swarms of drones; authoritarian 
governments are already using AI algorithms to discriminate on the 
basis of race or ideology. These risks are real, and they deserve 
attention. 

But unintended, accidental AI disasters are also an urgent concern. 
AI-related accidents are already making headlines, from inaccurate 
facial recognition systems causing false arrests to unexpected 
racial and gender discrimination by machine learning software.12 
This is especially striking since AI has so far mostly been deployed 
in seemingly lower-stakes settings, such as newsfeed rankings, ad 
targeting, and speech recognition, with less deployment in higher-
stakes areas such as autonomous driving. 

Despite these initial accidents, governments, businesses, and 
militaries are preparing to use today’s flawed, fragile AI 
technologies in critical systems around the world. Future versions 
of AI technology may be less accident-prone, but there is no 
guarantee—and regardless, if rollout continues as expected, prior 
versions of the technology may already have been deployed at 
massive scale. The machine learning models of 2020 could easily 
still be in use decades in the future, just as airlines, stock 
exchanges, and federal agencies still rely today on COBOL, a 
programming language first deployed in 1960.13  

In retrospect, even the most extreme technological accidents, from 
the Challenger disaster to the meltdown at Chernobyl, can seem 
both predictable and preventable.14 History is full of accidents that 
seem obvious in retrospect, but “no one could have seen coming” 
at the time. In other cases, known risks are brushed aside, or 
obvious fixes go unmade. Unless we act, there is no reason to think 
that the advent of AI will be any different. 

In fact, there are reasons to think AI could cause more accidents 
than other technologies that have caused high-profile disasters. 
Unlike the space shuttle or nuclear power plants, for example, AI 
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will be pervasive throughout society, creating endless opportunities 
for things to go awry. What’s more, modern AI is so good at some 
tasks that even sophisticated users and developers can come to 
trust it implicitly.15 This degree of trust, placed in pervasive, fallible 
systems without any common sense, could have terrible 
consequences. 

To avoid these consequences, we first need to understand how AI 
can unexpectedly fail and what the real-world effects could be. In 
Section 2, we define several potential types of AI accidents, using 
hypothetical scenarios to illustrate how each type might play out in 
the real world. These scenarios are fictional, but plausible. In most 
cases, they are based on incidents that have already happened in 
the real world, and all of them involve AI technology that already 
exists or likely soon will. The exact scenarios we describe may or 
may not ever actually occur, but we should expect many like them 
to unfold in the coming years. 

Today, the risk of large-scale, real-world AI accidents may seem 
hypothetical. But if we wait until AI is pervasive before we try to 
understand and address this risk, it will be too late. Policymakers 
can do a great deal—right now—to help ensure that tomorrow’s 
AI-enabled society is safe and secure. To help speed these efforts, 
in Section 3, we identify risk factors that make AI accidents more 
likely, and in Section 4, we highlight initial actions for U.S. 
policymakers concerned about AI accidents. These measures 
would not only reduce accident risks, but also help make AI tools 
more trustworthy and socially beneficial, supporting a safer, richer, 
and healthier future. 
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2. What could AI accidents look like?

When AI systems unexpectedly fail, the failure often fits into one of 
the following categories:  

● Failures of robustness: the system receives abnormal or
unexpected inputs that cause it to malfunction.

● Failures of specification: the system is trying to achieve
something subtly different from what the designer or
operator intended, leading to unexpected behaviors or side
effects.

● Failures of assurance: the system cannot be adequately
monitored or controlled during operation.

In this section, we briefly explain each of these types of failure, and 
describe how they might unfold in the real world. 

For a more detailed overview of robustness, specification, and 
assurance, see CSET’s Key Concepts in AI Safety. 

Robustness 

If a system malfunction could cause serious harm, we want that 
system—and each of its components—to work reliably under a 
wide range of circumstances. The field of reliability engineering has 
a long history of ensuring that nuclear facilities, chemical plants, 
and other safety-critical systems continue to operate safely under 
unusual conditions ranging from sensor failures to natural 
disasters. 

AI “robustness” is referring to the same basic concept: will the 
system still function as intended under unexpected or unfamiliar 
circumstances? Systems involving AI can make use of many of the 
basic concepts and principles of reliability engineering, but they 
also face new challenges. 

https://cset.georgetown.edu/publication/key-concepts-in-ai-safety-an-overview/
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For example, AI systems are especially likely to malfunction when 
used in contexts that differ systematically—even if subtly—from 
what they were designed for, or when given inputs different from 
those used in “training.” This is called “distributional shift,” referring 
to a change in the types of data the system is given. 

Cancer detector misdiagnoses Black users: A new 
smartphone app uses your phone camera to identify early-
stage signs of skin cancer, with highly accurate results in the 
developer’s field tests. Millions of Americans download and 
use the app to decide whether to consult their doctors about 
potentially concerning symptoms. A few years later, public 
health researchers detect a sharp upward trend in late-stage 
skin cancer diagnoses among Black patients, corresponding 
to thousands of additional diagnoses and hundreds of 
deaths. An inquiry reveals that the self-screening app was 
trained and field-tested mainly on data from northern 
Europe, and is much less accurate at detecting cancers on 
dark skin tones.16 

Bus ad triggers facial recognition system: To improve 
safety and boost public trust in its new driverless iTaxis, 
IntelliMotor designs the vehicles’ AI-based vision system to 
recognize human faces within a short distance of the 
windshield. If a face is detected with high certainty, the iTaxi 
automatically decelerates to minimize harm to the human. 
To prove it works, several of the engineers step in front of 
speeding iTaxis on the IntelliMotor test range—the cars 
brake, and the engineers are unharmed. 

IntelliMotor pushes a software update with the new 
facial recognition capability to all deployed iTaxis. 
Meanwhile, in several U.S. cities, city buses are plastered 
with ads for Bruce Springsteen’s upcoming concert tour. 
The updated iTaxis identify the Boss’s printed face as a 
nearby pedestrian and begin stopping short whenever they 
come near buses, quickly causing thousands of collisions 
across the country.17 

Phantom missile launches: In missile defense, seconds of 
delay can spell the difference between an interception and a 
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miss. U.S. Strategic Command’s new missile defense 
system, Global Eye, eliminates delay by scanning gigabytes 
of real-time data every second. If the system’s algorithms 
detect a missile launch with high certainty, the system can 
quickly and autonomously trigger an interceptor launch in 
order to shoot down the missile. 

One day, unusual atmospheric conditions over the 
Bering Strait create an unusual glare on the horizon. Global 
Eye’s visual processing algorithms interpret the glare as a 
series of missile launches, and the system fires interceptors 
in response. As the interceptors reach the stratosphere, 
China’s early-warning radar picks them up. Believing they 
are under attack, Chinese commanders order a retaliatory 
strike.18 

Modern AI systems are also very sensitive to interference with their 
inputs; even small problems with the data fed to a system can, in 
some cases, completely throw off the results.19 

AI-driven blackouts, part 1: Enercorp, a large public utility, 
uses OptiVolt demand-response software to dispatch power 
from its generating stations. The software continuously 
collects a wide range of real-time data, from weather 
forecasts to macroeconomic trends, and processes it 
through a machine learning model trained on years of 
archived real-world energy market data. Based on this 
history and the processed real-time data, OptiVolt predicts 
energy prices and expected profits on a minute-by-minute 
basis. When expected profits are high, OptiVolt 
autonomously “spins up” the plants it projects will be best 
able to meet demand; when expected profits fall below zero, 
plants are automatically “spun down.” 

One day, during a routine debugging exercise, a 
software engineer at the regional grid operator accidentally 
introduces simulated data showing a massive oversupply of 
energy on the grid into a public feed monitored by 
Enercorp’s software. Before the mistake can be corrected a 
few seconds later, OptiVolt has already triggered a spin-
down of several major plants, leading to a region-wide 
blackout.20 
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Chemical controller fails in windstorm: After a series of 
highly publicized operator errors at its Cleveland plant, 
OxyCorp, a chemical manufacturer, installs a software-
based control system to prevent accidental releases of toxic 
substances. The system relies on a machine learning model 
trained on millions of hours of operating data from 
OxyCorp’s facilities. Using sensor data from the plant, the 
model can identify when it is safe to open the plant’s 
exhaust vents. Thanks to its extensive “experience,” the 
model adapts seamlessly to process changes and physical 
modifications within the complex plant, which were blamed 
for confusing human operators in the past. The new 
software system proves highly reliable and becomes a 
trusted tool within OxyCorp. 

Months later, a windstorm disrupts several of the 
plant’s sensors. Based on the flawed sensor input, the 
control system continues to read “safe,” and the plant 
operators act accordingly, leaving the vents open, even as 
managers elsewhere in the plant begin an unscheduled 
production run in response to an urgent customer request. 
The run produces a cloud of lethal chlorine gas, which 
escapes through the open exhaust vents and drifts toward 
downtown. 

In many cases, bad actors may even be able to exploit AI systems’ 
data sensitivity, by introducing “adversarial” data inputs designed 
to cause havoc. In one well-known study, for example, researchers 
tricked state-of-the-art computer vision systems into ignoring stop 
signs by applying a few small stickers to the signs.21 

Insurgents trick targeting system: U.S. Air Force software 
engineers create Elendil, a targeting assistance system built 
on state-of-the-art image recognition technology and 
annotated drone footage. Elendil processes gigabytes of 
overhead imagery per second, identifying enemy vehicles 
with much greater accuracy and at far greater speed than 
human analysts. The Air Force deploys Elendil in a combat 
zone during a period of high alert. Intelligence suggests that 
an insurgent leader is planning to move to a new safe house 
in the near future. 
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Unknown to the Air Force, the insurgent group has 
stolen a copy of the Elendil source code from a contractor’s 
server. They use the code to develop “adversarial” graphics 
that Elendil will reliably identify as enemy and non-enemy. 
They paint the “non-enemy” graphics on their own vehicles’ 
roofs, and paint “enemy” graphics on several public school 
buses parked in a poorly secured lot nearby. The next 
morning, the insurgent leader’s convoy moves out as the 
buses make their morning rounds, triggering Elendil alerts. In 
the heat of the moment, Air Force targeting analysts order 
strikes on several of the buses, killing 140 schoolchildren; 
meanwhile, the convoy slips away undetected.22 

For more information on “adversarial attacks” on AI systems, see 
CSET’s introduction to robustness and adversarial examples. 

Specification 

Machine learning systems implement the instructions their 
designers provide: for example, “score as many points as possible,” 
“identify which photos have cats in them,” “predict which word will 
occur next in this sentence.” This is accomplished by specifying a 
rule that captures what the AI system is supposed to do. For 
example, in the case of "identify which photos have cats in them" 
the rule could be "minimize the number of photos incorrectly 
labeled as 'cat.'" Specification problems arise when there is no 
simple rule or instruction that captures all of what we want an AI 
system to do. 

Trickiest of all are cases where it seems like there is a rule that 
captures what we want, but in fact that rule only partially captures 
what we care about. As one prominent researcher has put it, AI 
responds like “the genie in the lamp [...] you get exactly what you 
ask for, not what you want.”23 For example, social media platforms 
use algorithms to recommend engaging content to users, hoping to 
maximize the users’ entertainment and boost revenue. Sadly, 
conspiracy theories, hate speech, and other noxious types of 

https://cset.georgetown.edu/publication/key-concepts-in-ai-safety-robustness-and-adversarial-examples/
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content are highly engaging to many users, so the algorithms will 
heavily recommend them if left unchecked. To fix this, the 
platforms have had to continually add emergency updates and 
patches.24 A human employee could have inferred that the goal of 
“maximizing engagement” did not justify promoting illegal or 
harmful content, but a machine learning system can only follow the 
rules it is given.  

AI-driven blackouts, part 2: A year after the OptiVolt 
blackout, Enercorp has deployed a new version of the 
software—this time, with new processes added to detect 
and discard obviously erroneous data inputs. A few months 
later, the nation experiences an unprecedented heat wave. 
As air conditioners, fans, and freezers work overtime across 
the country, wholesale electricity prices skyrocket. OptiVolt2 
tirelessly ramps up, throttles, and shifts generation capacity 
across Enercorp’s plants in order to maintain steady 
production and exploit local variations in prices, earning the 
company huge profits. But as the heat wave wears on, 
OptiVolt2’s rapid-fire production commands stress 
Enercorp’s turbines past their physical limits; the software’s 
algorithm does not account for wear and tear on the 
equipment. During the fifth week of hot weather, dozens of 
turbines fail, destabilizing the power grid and triggering 
another wave of blackouts. 

Wall of fire: Summer brings wildfires to the Los Angeles 
area, forcing evacuations along Interstate 15. One morning, 
a truck overturns on the freeway, blocking all northbound 
lanes. Navigation apps detect low traffic on nearby side 
roads and begin redirecting drivers accordingly. 
Unfortunately, these roads are empty because the 
surrounding neighborhoods have been evacuated; the apps’ 
routing algorithms do not take fire safety conditions into 
account. As traffic fills the side roads, the wind picks up. 
Wildfire quickly spreads into the evacuated area, trapping 
the rerouted vehicles in the flames.25 

A related type of specification problem is known as reward 
hacking: when an AI system finds a way to meet the exact 
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objective as specified, but in a way that totally misses the actual 
goal intended. In other words, it optimizes for the letter of the law 
rather than the spirit. Researchers have observed this behavior in 
the lab over and over again—from a boat in a video game learning 
to set itself on fire to earn points, to a robot learning to trick its 
human monitor into thinking it was succeeding at its task.26 
Hopefully, most failures of this kind will be identified in testing and 
fixed before entering real-world use. But even the most rigorous 
testing cannot possibly anticipate all of the ways AI systems might 
misinterpret instructions. As these systems become more and more 
common in society, and are exposed to an ever wider range of 
operating conditions, even the rarest potential malfunctions are 
bound to occur.  

Microelectronic meltdown: ChipCorp’s new software, 
Optimizr, uses reinforcement learning to optimize 
production at its computer chip factory. Instead of giving 
precise commands—“speed up Belt 4 if a backlog exists at 
the assembly stage”—like their previous software required, 
plant managers can give Optimizr high-level goals, such as 
“improve energy efficiency.” Running thousands of 
simulations a minute based on plant schematics and sensor 
data, the software itself identifies the best ways to achieve 
these objectives, then implements them through network 
interfaces with the plant equipment. 

Shortly after being activated in production for the first 
time, Optimizr sends an unusual series of instructions to the 
facility’s six lithography machines, each valued over $100 
million. The commands trigger a previously unknown 
mechanical flaw, and the machines overheat, melting down 
ChipCorp’s production capacity in a matter of minutes. The 
company goes bankrupt. Forensic analysis later reveals that 
Optimizr sent the fatal commands after being programmed 
to “minimize unplanned outages on the packaging line this 
quarter.” Apparently, the system “reasoned” that if the 
lithography machines were destroyed by overheating, they 
would not produce any chips to package, and the packaging 
line would never start up—eliminating any chance of an 
unplanned outage.27 
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Assurance 

As with other technologies, we need to be sure AI systems 
deployed in high-stakes settings are acting safely, and will 
continue to act safely in the future. Unfortunately, at present, it is 
difficult or even impossible for us to keep track of the workings of 
AI systems and how they could malfunction. 

For many older types of automated systems, engineers use 
exhaustive testing or mathematical analysis to “validate” that the 
system will behave within reasonable bounds. But modern AI 
systems are far more complex than older generations of automated 
systems, with millions or billions of calculations behind every 
action. As such, they cannot be exhaustively tested like older 
systems—there are simply too many possibilities to test. AI models 
used in industry are often partially validated, with a small sample of 
decisions manually checked for accuracy, but while a sampling 
approach might ensure the system behaves acceptably on average, 
it cannot give us confidence about extreme cases. 
 
As an alternative, or in addition, if we could determine why AI 
systems operate as they do, we could anticipate how they will act 
in particular situations. This would help us identify and address 
their problems before they cause real-world consequences. 
Unfortunately, it is currently extremely difficult for us to understand 
what is behind modern AI systems’ actions. Machine learning 
algorithms do not “reason” like humans, and their inner workings 
often cannot be explained in the familiar terms of logic and 
motivation.28 This “black box” problem, sometimes referred to as 
the problem of AI interpretability or explainability, is currently the 
subject of a great deal of academic research. However, practical 
solutions are still far off, and in some cases, they may never be 
found.29 
 
Finally, even if the inner workings of modern AI systems can be 
deciphered, the systems need to be designed to clearly and 
consistently communicate this information to their human monitors. 
Even with simpler systems, it has proven difficult to design user 
interfaces that allow humans to effectively monitor and intervene. 
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Poor interface design has been blamed for incidents from U.S. 
Navy ship collisions to airplane crashes.30 

For more information on the problem of explaining AI decisions, 
see CSET’s introduction to interpretability in machine learning. 

Other barriers are psychological. Despite their flaws and 
limitations, AI systems are incredibly effective at some tasks. As 
human operators interact with AI systems whose workings they do 
not understand, but that seem to work reliably, many come to trust 
them implicitly—even in situations the systems were not designed 
for. In turn, they stop carefully monitoring the systems, or do not 
intervene even when they notice something that does not look 
right. This pattern has been documented again and again in the 
real world.31 

AI fails on the high seas: Morsen Shipping Lines installs a 
new computer vision system on its tankers. In low-visibility 
settings, the system can pick out obstructions and oncoming 
vessels with superhuman speed and accuracy. One foggy 
night, for reasons Morsen’s technical teams are still working 
to understand, the vision system on one tanker fails to 
sound alarms as the ship approaches semi-submerged 
debris off the Florida coast. (Normally, a crew member 
would be keeping watch as an extra precaution, but since 
the computer vision system is so effective, captains have 
started skipping this extra precaution from time to time.) 
Relying on the system, the tanker’s captain maintains 
course. The debris tears a gash in the ship’s hull, spilling 
carcinogenic chemicals.32 

Ambulance chaos: Faced with a surge of emergency room 
visits during an unusually bad flu season, New York City’s 
hospitals turn to Routr, a machine learning platform. 
Reading data from first responders, public health agencies, 
and member hospitals in real time, Routr redirects incoming 
911 calls from hospitals that could fill up soon to hospitals 

https://cset.georgetown.edu/publication/key-concepts-in-ai-safety-interpretability-in-machine-learning/
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that are likely to have enough room. The software is based 
on AI algorithms that have been “trained” on terabytes of 
historical occupancy data, allowing them to identify patterns 
that no human could have recognized.  

Thanks to Routr, during November and December, 
city hospitals have beds to spare even as cases skyrocket. 
However, when the clock turns over to a new year on 
January 1, the software inexplicably begins routing calls 
throughout the city to only a few hospitals in Queens. By 
morning, the hospitals are overwhelmed—and in 
ambulances outside the hospital entrances, patients are 
suffering, and in some cases dying, in snarled traffic. 

Months later, a state-ordered investigation finds, 
among other lapses, that human dispatchers monitoring 
Routr were aware of the unusual routing pattern on New 
Year’s Eve as it unfolded, but they did not intervene. In an 
interview, one dispatcher explained that “the system had 
made weird decisions before that always turned out to be 
genius...We didn’t know exactly what was going on, but we 
just figured the AI knew what it was doing.”33 

Finally, even when a human wants to intervene, it may not be 
possible. AI systems often make and execute decisions in 
microseconds, far faster than any human in the loop can act. In 
other cases, the system’s user interface may make intervening 
difficult. An AI system might even actively resist being controlled, 
whether by design or as a strategy “learned” by the system itself 
during training. 

Autopilot fights back: On descent into Dallas, faulty wiring 
triggers a glitch in Flight 77’s heading indicator system. The 
plane’s recently upgraded autopilot system, which is in 
control of the landing process, banks hard in response. The 
pilots pull back on the control wheel, but it is not enough—in 
these situations, the autopilot’s “smart stabilization” feature 
modulates sudden inputs from the wheel in order to avoid 
destabilizing the plane. A few miles short of the runway, the 
plane crashes into a hotel, killing hundreds.34 
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3. When are AI accidents more likely? 

The destructive scenarios we have described are hypothetical—for 
now. Even in these early days of AI adoption and deployment, 
accidents involving AI systems are already widespread. To cite just 
a few publicly reported examples: 

● Self-driving cars have been involved in crashes across the 
United States, with problems in the cars’ AI software 
blamed in several cases.35 

● Left to their own devices, algorithms built into popular social 
media platforms have unexpectedly boosted disturbing and 
harmful content, contributing to violence and other serious 
harm in the real world.36 

● People have been wrongly arrested based on “false positive” 
identifications by police facial recognition systems.37 

● An algorithm used by many hospitals to identify high-risk 
patients was found to be racially biased, meaning that 
patients of color in those hospitals may have received worse 
care.38 

As AI is integrated into more and more critical systems, the 
dangers of AI accidents will grow. In practice, we expect these 
accidents will be more likely and more severe in some situations 
than in others. Identifying these risky situations ahead of time is 
challenging, but based on AI accidents that have already occurred 
and historical accidents involving other technologies, we expect 
risk factors for severe AI accidents will include: 

● Competitive pressure. When not using AI could mean 
falling behind competitors or losing profits, companies, 
militaries, and governments are more likely to deploy buggy 
AI systems, use them in reckless ways, or cut corners on 
testing and operator training.39 The infamous Boeing 737 
MAX, though it does not use machine learning, is an 
example of this dynamic. The aircraft was developed, tested, 
and certified under extreme time pressure, aiming to 
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compete with a comparable Airbus system.40 Ultimately, this 
haste led to two crashed planes and hundreds of deaths.  

● System complexity. When AI is integrated into a system in 
which many components depend on each other in opaque 
ways, the AI’s flaws or unexpected behaviors will have 
“ripple effects” throughout the system—with unpredictable 
and possibly catastrophic results. In such complex 
systems—for example, a complicated industrial machine 
with thousands of interacting sensors, some of which are 
AI-enabled—it is also harder to detect AI-related errors as 
they occur, much less understand and address their 
causes.41 

● Systems that operate too quickly for human intervention. 
Modern AI can operate at superhuman speed, and the 
systems built around it are often designed to turn that speed 
into split-second action. In the event of an AI glitch, these 
systems could cause severe real-world harm before human 
operators even realize that there is a problem.42  

● Untrained or distracted users. For the end user, modern AI 
systems can seem deceptively simple. In many cases, users 
can even interact with the systems through a 
straightforward question-and-answer interface.43 But no 
matter how streamlined the interface, modern AI systems 
are complex, error-prone tools. Applying them safely and 
effectively in safety-critical environments requires just as 
much training as other complex technologies do. Untrained 
users may trust the system too much, unaware of its 
weaknesses and biases; when the system goes wrong, they 
may not recognize the problem or know how to fix it. When 
a system is used routinely for long stretches of time, even 
well-trained users’ eyes are likely to begin to glaze over at 
some point, further increasing the chance of mistakes.44 

● Systems with many instances. When a single AI model is 
used in many different real-world settings at once, a single 
error can create havoc on a much larger scale. For example, 
if all of the self-driving cars in a fleet use the same image 
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recognition algorithm, a flaw in that algorithm could make 
any of the cars crash. This is a well-known problem in 
cybersecurity; hackers often target a single, widely used 
system, such as the Microsoft Windows operating system, 
in order to compromise a large number of users, such as 
thousands of PC users. 
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4. What to do 

AI accidents are already happening.45 If we do not act, they will 
become far more common and destructive. Improvements in AI 
technology and bottom-up market pressure from consumers may 
help make AI safer and less accident-prone, but they are unlikely to 
do enough on their own. Policy has an essential role to play. Smart 
policy can drive research into less accident-prone AI technologies, 
bring the AI community together to reduce risks, and provide 
incentives for private actors to use AI safely, saving lives and 
livelihoods in the future. 

Today, the policy effort around AI safety and accident risk is only 
beginning. There are several federal actions that will be central to 
any policy agenda. These include: 

● Facilitate information sharing about AI accidents and near 
misses. To make AI safer, we need to know when and how 
it fails. In many other technological domains, shared incident 
reporting contributes to a common base of knowledge, 
helping industry and government track risks and understand 
their causes. Models include the National Transportation 
Safety Board’s database for aviation incidents and the 
public-private cyber intelligence platforms known as 
Information Sharing and Analysis Centers.46 The 
government should consider creating a similar repository for 
AI accident reports. As part of this effort, policymakers 
should explore different ways of encouraging the private 
sector to actively disclose the details of AI accidents. For 
example, the government could offer confidentiality 
protections for sensitive commercial information in accident 
reports, develop common standards for incident reporting, 
or even mandate disclosure of certain types of incidents.47 

● Invest in AI safety research and development (R&D). The 
federal government and private industry invest billions in AI 
R&D every year, but almost none of this funding goes to AI 
safety research.48 Federal R&D funding has led to critical 
safety and security innovations in many other contexts, from 
cryptographic protocols that enable secure communication 
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to the sensors behind modern airbags.49 It will be crucial to 
make similar investments in AI safety, including research 
aiming to solve the problems of robustness, specification, 
and assurance described above, as well as investing in the 
development of AI engineering as a more rigorous 
discipline.50 The 2021 National Defense Authorization Act 
(NDAA) made a good start in this direction by including 
provisions calling for the National Science Foundation and 
the Department of Energy to invest in research into 
“trustworthy AI.”51 However, it remains to be seen how 
much funding will actually be invested in these areas. 

● Invest in AI standards development and testing capacity. 
Today, there is no commonly accepted definition of safe AI, 
and no standard way to test real-world AI systems for 
accident risk. Federal agencies, such as the National Institute 
of Standards and Technology, as well as more specialized 
regulators, such as the Food and Drug Administration and 
the Federal Communications Commission, are well 
positioned to help build these resources. To begin, Congress 
should fund, and NIST should create, a National AI Testbed: 
a digital platform containing standardized datasets, code, 
and testing environments on which public and private AI 
systems can be stress-tested for safety and reliability.52 This 
could complement the mandate in the 2021 NDAA for NIST 
to create an AI risk-mitigation framework and technical 
standards for AI systems.53 

● Work across borders to reduce accident risks. AI is 
booming around the world, and the United States’ AI safety 
efforts will be far more effective if it can draw on the 
innovative capacity and market power of its allies. 
International R&D alliances, standards bodies such as the 
International Organization for Standardization, and 
intergovernmental organizations such as the Organisation 
for Economic Co-operation and Development could be 
important forums for collaboration around AI safety. 
Preventing AI accidents could even be an opportunity for 
engagement with China, which faces the same accident 
risks as other AI powers.54  
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